The C-terminal tail of the Hedgehog receptor Patched regulates both localization and turnover.
نویسندگان
چکیده
Patched (Ptc) is a membrane protein whose function in Hedgehog (Hh) signal transduction has been conserved among metazoans and whose malfunction has been implicated in human cancers. Genetic analysis has shown that Ptc negatively regulates Hh signal transduction, but its activity and structure are not known. We investigated the functional and structural properties of Drosophila Ptc and its C-terminal domain (CTD), 183 residues that are predicted to reside in the cytoplasm. Our results show that Ptc, as well as truncated Ptc deleted of its CTD, forms a stable trimer. This observation is consistent with the proposal that Ptc is structurally similar to trimeric transporters. The CTD itself trimerizes and is required for both Ptc internalization and turnover. Two mutant forms of the CTD, one that disrupts trimerization and the other that mutates the target sequence of the Nedd4 ubiquitin ligase, stabilize Ptc but do not prevent internalization and sequestration of Hh. Ptc deleted of its CTD is stable and localizes to the plasma membrane. These data show that degradation of Ptc is regulated at a step subsequent to endocytosis, although endocytosis is a likely prerequisite. We also show that the CTD of mouse Ptc regulates turnover.
منابع مشابه
Hedgehog Induces Opposite Changes in Turnover and Subcellular Localization of Patched and Smoothened
Secreted signaling proteins of the Hedgehog family organize spatial pattern during animal development. Two integral membrane proteins have been identified with distinct roles in Hedgehog signaling. Patched functions in Hedgehog binding, and Smoothened functions in transducing the signal. Current models view Patched and Smoothened as a preformed receptor complex that is activated by Hedgehog bin...
متن کاملActivation of Smurf E3 Ligase Promoted by Smoothened Regulates Hedgehog Signaling through Targeting Patched Turnover
Hedgehog signaling plays conserved roles in controlling embryonic development; its dysregulation has been implicated in many human diseases including cancers. Hedgehog signaling has an unusual reception system consisting of two transmembrane proteins, Patched receptor and Smoothened signal transducer. Although activation of Smoothened and its downstream signal transduction have been intensively...
متن کاملHedgehog signaling maintains resident hepatic progenitors throughout life.
Hedgehog signaling through its receptor, Patched, activates transcription of genes, including Patched, that regulate the fate of various progenitors. Although Hedgehog signaling is required for endodermal commitment and hepatogenesis, the possibility that it regulates liver turnover in adults had not been considered because mature liver epithelial cells lack Hedgehog signaling. Herein, we show ...
متن کاملTwo patched protein subtypes and a conserved domain of group I proteins that regulates turnover.
Patched (Ptc) is a 12-cross membrane protein that binds the secreted Hedgehog protein. Its regulation of the Hedgehog signaling pathway is critical to normal development and to a number of human diseases. This report analyzes features of sequence similarity and divergence in the Ptc protein family and identifies two subtypes distinguished by novel conserved domains. We used these results to pro...
متن کاملHhip regulates zebrafish muscle development by both sequestering Hedgehog and modulating localization of Smoothened.
Sharp borders between cells with different developmental fates are important for patterning of invertebrates, but are not well understood in vertebrates. Zebrafish slow muscle cells develop from adaxial cells, a one-cell-diameter-thick pseudo-epithelium immediately adjacent to the notochord. Hedgehog (Hh) signals from notochord specify adaxial cells to form slow muscle cells. Cells next to adax...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 20 18 شماره
صفحات -
تاریخ انتشار 2006